Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Mechanical strain presents an effective control over symmetry-breaking phase transitions. In quantum paralelectric SrTiO3, strain can induce ferroelectric order via modification of the local Ti potential energy landscape. However, brittle bulk materials can only withstand limited strain range (~0.1%). Taking advantage of nanoscopically-thin freestanding membranes, we demonstrate an in-situ strain-induced reversible ferroelectric transition in freestanding SrTiO3 membranes. We measure the ferroelectric order by detecting the local anisotropy of the Ti 3d orbital signature using x-ray linear dichroism at the Ti-K pre-edge, while the strain is determined by x-ray diffraction. With reduced thickness, the SrTiO3 membranes remain elastic with >1% tensile strain cycles. A robust displacive ferroelectricity appears beyond a temperature-dependent critical strain. Interestingly, we discover a crossover from a classical ferroelectric transition to a quantum regime at low temperatures, which enhances strain-induced ferroelectricity. Our results offer new opportunities to strain engineer functional properties in low dimensional quantum materials and provide new insights into the role of ferroelectric fluctuations in quantum paraelectric SrTiO3.more » « lessFree, publicly-accessible full text available May 13, 2026
-
Free, publicly-accessible full text available February 27, 2026
-
Abstract Recent theoretical studies have suggested that transition metal perovskite oxide membranes can enable surface phonon polaritons in the infrared range with low loss and much stronger subwavelength confinement than bulk crystals. Such modes, however, have not been experimentally observed so far. Here, using a combination of far-field Fourier-transform infrared (FTIR) spectroscopy and near-field synchrotron infrared nanospectroscopy (SINS) imaging, we study the phonon polaritons in a 100 nm thick freestanding crystalline membrane of SrTiO3transferred on metallic and dielectric substrates. We observe a symmetric-antisymmetric mode splitting giving rise to epsilon-near-zero and Berreman modes as well as highly confined (by a factor of 10) propagating phonon polaritons, both of which result from the deep-subwavelength thickness of the membranes. Theoretical modeling based on the analytical finite-dipole model and numerical finite-difference methods fully corroborate the experimental results. Our work reveals the potential of oxide membranes as a promising platform for infrared photonics and polaritonics.more » « less
-
Recent theoretical studies have suggested that transition metal perovskite oxide membranes can enable surface phonon polaritons in the infrared range with low loss and much stronger subwavelength confinement than bulk crystals. Such modes, however, have not been experimentally observed so far. Here, using a combination of far-field Fourier-transform infrared (FTIR) spectroscopy and near-field synchrotron infrared nanospectroscopy (SINS) imaging, we study the phonon polaritons in a 100 nm thick freestanding crystalline membrane of SrTiO3 transferred on metallic and dielectric substrates. We observe a symmetric-antisymmetric mode splitting giving rise to epsilon-near-zero and Berreman modes as well as highly confined (by a factor of 10) propagating phonon polaritons, both of which result from the deep-subwavelength thickness of the membranes. Theoretical modeling based on the analytical finite-dipole model and numerical finite-difference methods fully corroborate the experimental results. Our work reveals the potential of oxide membranes as a promising platform for infrared photonics and polaritonics.more » « less
An official website of the United States government

Full Text Available